MOS管综合知识大全 MOS管参数含义详解
标签:
mos管
来源:华强电子网
作者:NV
时间:2021-11-01 14:16
摘要:MOS管,即金属(Metal)—氧化物(Oxide)—半导体(Semiconductor)场效应晶体管,是一种应用场效应原理工作的半导体器件。
MOS管的简介
MOS管,即金属(Metal)—氧化物(Oxide)—半导体(Semiconductor)场效应晶体管,是一种应用场效应原理工作的半导体器件。
MOS管的特点
和普通双极型晶体管相比,MOS管具有输入阻抗高、噪声低、动态范围大、功耗小、易于集成等优势。
MOS管的应用
MOS管在开关电源、镇流器、高频感应加热、高频逆变焊机、通信电源等高频电源领域得到了越来越普遍的应用。
MOS管的种类
MOS管是FET的一种(另一种为JFET结型场效应管),主要有两种结构形式:N沟道型和P沟道型;又根据场效应原理的不同,分为耗尽型(当栅压为零时有较大漏极电流)和增强型(当栅压为零,漏极电流也为零,必须再加一定的栅压之后才有漏极电流)两种。因此,MOS管可以被制构成P沟道增强型、P沟道耗尽型、N沟道增强型、N沟道耗尽型4种类型产品。
MOS管的结构
每一个MOS管都提供有三个电极:Gate栅极(表示为“G”)、Source源极(表示为“S”)、Drain漏极(表示为“D”)。接线时,对于N沟道的电源输入为D,输出为S;P沟道的电源输入为S,输出为D;且增强型、耗尽型的接法基本一样。
N沟道型场效应管的源极和漏极接在N型半导体上,而P沟道型场效应管的源极和漏极则接在P型半导体上。场效应管输出电流由输入的电压(或称场电压)控制,其输入的电流极小或没有电流输入,使得该器件有很高的输入阻抗,这也是MOS管被称为场效应管的重要原因。
MOS管工作原理
MOS管的工作原理(以N沟道增强型MOS场效应管)它是利用VGS来控制“感应电荷”的多少,以改变由这些“感应电荷”形成的导电沟道的状况,然后达到控制漏极电流的目的。在制造管子时,通过工艺使绝缘层中出现大量正离子,故在交界面的另一侧能感应出较多的负电荷,这些负电荷把高渗杂质的N区接通,形成了导电沟道,即使在VGS=0时也有较大的漏极电流ID。当栅极电压改变时,沟道内被感应的电荷量也改变,导电沟道的宽窄也随之而变,因而漏极电流ID随着栅极电压的变化而变化。
MOS管极限参数
ID:漏源电流。是指场效应管正常工作时,漏源间所允许通过的最大电流。场效应管的工作电流不应超过 ID 。此参数会随结温度的上升而有所减额
IDM:脉冲漏源电流。此参数会随结温度的上升而有所减额
PD:耗散功率。是指场效应管性能不变坏时所允许的最大漏源耗散功率。使用时,场效应管实际功耗应小于 PDSM 并留有一定余量。此参数一般会随结温度的上升有所减额
VGS:栅源电压
Tj:工作结温。通常为 150 ℃ 或 175 ℃ ,器件设计的工作条件下须确应避免超过这个温度,并留有一定裕量
TSTG:存储温度范围
MOS管静态参数
V(BR)DSS:漏源击穿电压。是指栅源电压VGS 为 0 时,场效应管正常工作所能承受的最大漏源电压。这是一项极限参数,加在场效应管上的工作电压必须小于 V(BR)DSS 。它具有正温度特性。故应以此参数在低温条件下的值作为安全考虑。△ V(BR)DSS/ △ Tj :漏源击穿电压的温度系数,一般为 0.1V/ ℃
RDS(on):在特定的 VGS (一般为 10V)、结温及漏极电流的条件下, MOSFET 导通时漏源间的最大阻抗。它是一个非常重要的参数,决定了 MOSFET 导通时的消耗功率。此参数一般会随结温度的上升而有所增大。故应以此参数在最高工作结温条件下的值作为损耗及压降计算
VGS(th):开启电压(阀值电压)。当外加栅极控制电压 VGS 超过 VGS(th) 时,漏区和源区的表面反型层形成了连接的沟道。应用中,常将漏极短接条件下 ID 等于 1 毫安时的栅极电压称为开启电压。此参数一般会随结温度的上升而有所降低
IDSS:饱和漏源电流,栅极电压 VGS=0 、 VDS 为一定值时的漏源电流。一般在微安级
IGSS:栅源驱动电流或反向电流。由于MOSFET输入阻抗很大,IGSS 一般在纳安级。
MOS管动态参数
gfs :跨导。是指漏极输出电流的变化量与栅源电压变化量之比,是栅源电压对漏极电流控制能力大小的量度。gfs 与 VGS 的转移关系注意看图表
Qg :栅极总充电电量。MOSFET 是电压型驱动器件,驱动的过程就是栅极电压的建立过程,这是通过对栅源及栅漏之间的电容充电来实现的,下面将有此方面的详细论述
Qgs :栅源充电电量
Qgd :栅漏充电(考虑到 Miller 效应)电量
Td(on) :导通延迟时间。从有输入电压上升到 10% 开始到 VDS 下降到其幅值 90% 的时间
Tr :上升时间,输出电压 VDS 从 90% 下降到其幅值 10% 的时间
Td(off) :关断延迟时间,输入电压下降到 90% 开始到 VDS 上升到其关断电压时 10% 的时间
Tf :下降时间,输出电压 VDS 从 10% 上升到其幅值 90% 的时间
Ciss :输入电容, Ciss= CGD + CGS ( CDS 短路)
Coss :输出电容,Coss = CDS +CGD
Crss :反向传输电容,Crss = CGD
MOS管的极间电容,MOSFET 之感生电容被大多数制造厂商分成输入电容,输出电容以及反馈电容。所引述的值是在漏源电压为某固定值的情况下。此些电容随漏源电压的变化而变化,电容数值的作用是有限的。输入电容值只给出一个大概的驱动电路所需的充电说明,而栅极充电信息更为有用。它表明为达到一个特定的栅源电压栅极所必须充的电量。
MOS管雪崩击穿特性参数
这些参数是 MOSFET 在关断状态能承受过压能力的指标。如果电压超过漏源极限电压将导致器件处在雪崩状态
EAS:单次脉冲雪崩击穿能量。这是个极限参数,说明 MOSFET 所能承受的最大雪崩击穿能量
IAR:雪崩电流
EAR:重复雪崩击穿能量